O si lo prefieres...


Panel Información

Utilizamos cookies propias y de terceros para mejorar tu experiencia de navegación. Al continuar con la navegación entendemos que aceptas nuestra política de cookies.

Building an Occupancy Model from Sensor Networks in Office Environments



Federico Castanedo
Diego López de Ipiña González de Artaza
Hamid Aghajan
Richard Kleihorst


(), 2011 (), p., -.,, 2011


The work presented here aims to answer this question: using just binary occupancy sensors is it possible to build a behaviour occupancy model over long-term logged data?. Sensor’s measurements are grouped to form arti?cial words (activities) and documents (set of activities). The goal is to infer the latent topics which are assumed to be the common routines from the observed data. An unsupervised probabilistic model, namely the Latent Dirichlet Allocation (LDA) is applied to automatically discover the latent topics (routines) in the data. Experimental results using real logged data of 24 weeks from an office building, with different number of topics, are shown. The results shown the powerful of the LDA model in order to extract relevant patterns from sensor networks data

Acerca de este recurso...

Visitas 97