formularioHidden
formularioRDF
Login

Regístrate

O si lo prefieres...

 

Panel Información

Utilizamos cookies propias y de terceros para mejorar tu experiencia de navegación. Al continuar con la navegación entendemos que aceptas nuestra política de cookies.

In

Sensors , 2012 Vol. 12 ( 8 ), p. 10208-10227
Impact factor: 1.739

Abstract

To be able to react adequately a smart environment must be aware of the context and its changes. Modeling the context allows applications to better understand it and to adapt to its changes. In order to do this an appropriate formal representation method is needed. Ontologies have proven themselves to be one of the best tools to do it. Semantic inference provides a powerful framework to reason over the context data. But there are some problems with this approach. The inference over semantic context information can be cumbersome when working with a large amount of data. This situation has become more common in modern smart environments where there are a lot sensors and devices available. In order to tackle this problem we have developed a mechanism to distribute the context reasoning problem into smaller parts in order to reduce the inference time. In this paper we describe a distributed peer-to-peer agent architecture of context consumers and context providers. We explain how this inference sharing process works, partitioning the context information according to the interests of the agents, location and a certainty factor. We also discuss the system architecture, analyzing the negotiation process between the agents. Finally we compare the distributed reasoning with the centralized one, analyzing in which situations is more suitable each approach.

Acerca de este recurso...

Visitas 228

Categorías: